Independent evaluation of an in‐house brachytherapy treatment planning system using simulation, measurement and calculation methods
نویسندگان
چکیده
Accuracy of treatment planning systems may significantly influence the efficacy of brachytherapy. The purpose of this work is a detailed, varied and independent evaluation of an in-house brachytherapy treatment planning software called STPS. Operational accuracy of STPS was investigated. Geometric tests were performed to validate entry and reconstruction of positional information from scanned orthogonal films. MCNP4C Monte Carlo code and TLDs were used for simulation and experimental measurement, respectively. STPS data were also compared with those from a commercial planning system (Nucletron PLATO). Discrepancy values between MCNP and STPS data and also those of PLATO and STPS at Manchester system dose prescription points (AL and AR) of tandem and ovoid configurations were 2.5% ± 0.5% and 5.4% ± 0.4%, respectively. Similar results were achieved for other investigated configurations. Observed discrepancies between MCNP and STPS at the dose prescription point and at 1 cm from the tip of the vaginal applicator were 4.5% and 25.6% respectively, while the discrepancy between the STPS and PLATO data at those points was 2.3%. The software showed submillimeter accuracy in its geometrical reconstructions. In terms of calculation accuracy, similar to PLATO, as attenuation of the sources and applicator body is not considered, dose was overestimated at the tip of the applicator, but based on the available criteria, dose accuracy at most points were acceptable. Our results confirm STPS's geometrical and operational reliability, and show that its dose computation accuracy is comparable to an established commercial TPS using the same algorithm.
منابع مشابه
Comparison and Evaluation of the Effects of Rib and Lung Inhomogeneities on Lung Dose in Breast Brachytherapy using a Treatment Planning System and the MCNPX Code
Introduction: This study investigates to what extent the computed dose received by lung tissue in a commercially available treatment planning system (TPS) for 192Ir high-dose-rate breast brachytherapy is accurate in view of tissue inhomogeneities and presence of ribs. Materials and Methods: A CT scan of the breast was used to construct a patient-equivalent phantom in the clinical treatment plan...
متن کاملCT-Based Brachytherapy Treatment Planning using Monte Carlo Simulation Aided by an Interface Software
Introduction: In brachytherapy, radioactive sources are placed close to the tumor, therefore, small changes in their positions can cause large changes in the dose distribution. This emphasizes the need for computerized treatment planning. The usual method for treatment planning of cervix brachytherapy uses conventional radiographs in the Manchester system. Nowadays, because of their advantages ...
متن کاملAccuracy Evaluation of Oncentraâ„¢ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code
Background: HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computat...
متن کاملEvaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation
Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...
متن کاملVerification of Monitor unit calculations for eclipse Treatment Planning System by in- house developed spreadsheet
Introduction: Computerized treatment planning is a rapidly evolving modality that depends on hardware and software efficiency. Despite ICRU recommendations suggesting 5% deviation in dose delivery the overall uncertainty shall be less than 3.5% as suggested by B.J. Minjnheer. J. In house spreadsheets are developed by the medical physicists to cross-verify the dose calculated by the Treatment Pl...
متن کامل